4.6 Article

Ultrasonically treated liquid interfaces for progress in cleaning and separation processes

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 1, Pages 21-46

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp05142h

Keywords

-

Funding

  1. Max-Planck Society
  2. DFG [RA2111]
  3. European Research Council under the ERC [320915]
  4. DFG (G8-project SmartCoat)
  5. Fonds der Chemischen Industrie
  6. European Research Council (ERC) [320915] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Ultrasound and acoustic cavitation enable ergonomic and eco-friendly treatment of complex liquids with outstanding performance in cleaning, separation and recycling of resources. A key element of ultrasonic-based technology is the high speed of mixing by streams, flows and jets (or shock waves), which is accompanied by sonochemical reactions. Mass transfer across the phase boundary with a great variety of catalytic processes is substantially enhanced through acoustic emulsification. Encapsulation, separation and recovery of liquids are fast with high production yield if applied by ultrasound. Here we discuss the state of knowledge of these processes by ultrasound and acoustic cavitation from a perspective of a physico-chemical model in order to predict and control the outcome. We focus on the physical interpretation and quantification of ultrasonic parameters and properties of liquids to understand the chemistry of liquid/liquid interfaces in acoustic fields. The roles of thermodynamic enthalpy and entropy (incl. Laplace and osmotic pressure) in the context of sonochemical reactions (separation, catalysis, degradation, cross-linking, ion exchange and phase transfer) are outlined. The synergy of ultrasound and electric fields or continuous flow chemistry for cleaning and separation via emulsification is highlighted by specific strategies involving polymers and ultrasonic membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available