4.6 Article

Microstructures of negative and positive azeotropes

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 28, Pages 19227-19235

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp02450e

Keywords

-

Funding

  1. Royal Society
  2. Durham University/EPSRC

Ask authors/readers for more resources

Azeotropes famously impose fundamental restrictions on distillation processes, yet their special thermodynamic properties make them highly desirable for a diverse range of industrial and technological applications. Using neutron diffraction, we investigate the structures of two prototypical azeotropes, the negative acetone-chloroform and the positive benzene-methanol azeotrope. C-H center dot center dot center dot O hydrogen bonding is the dominating interaction in the negative azeotrope but C-Cl center dot center dot center dot O halogen bonding contributes as well. Hydrogen-bonded chains of methanol molecules, which are on average longer than in pure methanol, are the defining structural feature of the positive azeotrope illustrating the fundamentally different local mixing in the two kinds of azeotropes. The emerging trend for both azeotropes is that the more volatile components experience the more pronounced structural changes in their local environments as the azeotropes form. The mixing of the acetone-chloroform azeotrope is essentially random above 20 angstrom, where the running Kirkwood-Buff integrals of our structural model converge closely to the ones expected from thermodynamic data. The benzene-methanol azeotrope on the other hand displays extended methanol-rich regions and consequently the running Kirkwood-Buff integrals oscillate up to at least 60 angstrom. Our study provides the first experimental insights into the microstructures of azeotropes and a direct link with their thermodynamic properties. Ultimately, this will provide a route for creating tailored molecular environments in azeotropes to improve and fine-tune their performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available