4.6 Article

Nanostructured copper/copper oxide hybrids: combined experimental and theoretical studies

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 31, Pages 21562-21572

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp03096c

Keywords

-

Funding

  1. National Natural Science Foundation of China [51271087, 51471076]

Ask authors/readers for more resources

With the extensive study of dealloying, copper oxides have been shown to be important members and exhibit huge potential in catalysis, energy transformation and storage fields. In this work, nanostructured copper/copper oxide hybrids were prepared through dealloying the sintered Al85Cu15 alloy and molecular dynamics (MD) simulations as well as calculations based on density functional theory (DFT) were performed to explore the oxidation mechanisms of copper in aqueous electrolytes. Cu/Cu2O/CuO compositions were obtained after immersing the sintered alloys in 20 wt% NaOH solutions under corrosion-free conditions at room temperature. Both X-ray diffraction (XRD) and potentiodynamic polarization results reveal that there exist large differences between the sintered Al85Cu15 alloy and its counterpart cast alloy and the Rietveld simulation analysis as well as MD simulations testify to the inhomogeneous atom distribution in the sintered alloy. DFT studies show that Cu-n (1 <= n <= 9) clusters possess higher surface energies than the Cu(111) surface and the calculated binding energies of the copper clusters and an atomic oxygen (Cu-n-O) are much higher than that of Cu(111)-O. The low surface diffusivity (D-s) of the clusters at the alloy-electrolyte interface extends their diffusion time, which may be beneficial to the formation and growth of oxide nuclei precursors during the dealloying process. Their microstructures and morphologies characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that CuO exists in the form of a nanoplate while Cu2O is a nanoparticle. Nanoporous copper (NPC) obtained by dealloying sintered and cast alloys exists in the form of a bicontinuous ligament-channel structure. This work enriches the dealloying research from both experimental and theoretical aspects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available