4.6 Article

Nanowires with dislocations for ultralow lattice thermal conductivity

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 15, Pages 9888-9892

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp00630b

Keywords

-

Ask authors/readers for more resources

Nanostructures grown by screw dislocations have been successfully synthesized in a range of materials, including thermoelectric materials, but the impact of these extended crystallographic defects on thermal properties of these nanostructures is not known. We investigate thermal transport in PbSe and SiGe nanowires storing screw dislocations via equilibrium molecular dynamics simulations. The inherent one dimensionality and the combined presence of a reconstructed surface and dislocation yield ultralow thermal conductivity values. Our simulations suggest that the large dislocation strain field in nanowires may play a key role in suppressing the thermal conductivity of thermoelectric nanomaterials to increase their thermoelectric figure of merit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available