4.4 Article Proceedings Paper

Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssa.201532570

Keywords

AlGaN; GaN; high electron mobility transistors; nanocrystalline materials; self-heating

Ask authors/readers for more resources

Top-side integration of nanocrystalline diamond films in the fabrication sequence of AlGaN/GaN high electron mobility transistors is demonstrated. Reliable oxygen plasma etching of the diamond capping layer, required for a diamond-before-gate process, was implemented by using a sacrificial SiN dummy gate. Hall characterization showed minimal (similar to 6%) reduction in sheet carrier density and commensurate increase in sheet resistance, while maintaining mobility and on-state drain current density. Off-state drain current and threshold voltage were increased, likely by fluorination of the AlGaN surface after removal of the sacrificial gate, even though a 20 nm thick Al2O3 layer was used as a SF6-plasma etch stop. Pulsed I-DS and on-resistance were improved, indicating that a 10 nm SiN/500 nm NCD could offer improved AlGaN surface passivation compared to a more conventional 100 nm thick PECVD SiN film. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available