4.7 Article

Comparative toxicities of bismuth oxybromide and titanium dioxide exposure on human skin keratinocyte cells

Journal

CHEMOSPHERE
Volume 135, Issue -, Pages 83-93

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.03.075

Keywords

Bismuth oxybromide; Titanium dioxide; Toxicological effects; Cellular uptake; ROS accumulation

Funding

  1. National Natural Science Foundation of China [21176168, 21303116]
  2. Science and Technology Project of Taiyuan University of Technology [2013A008]
  3. Outstanding Innovation Project of Shanxi Province, China [20133035]

Ask authors/readers for more resources

Nano-sized bismuth oxybromide (BiOBr) particles are being considered for applications within the semiconductor industry. However, little is known about their potential impact on human health. In this study, we comparatively investigated the cytotoxicity of BiOBr and titanium dioxide (TiO2) nanoparticles (NPs) using human skin keratinocyte cell line (HaCaT) as a research model. Results indicate that lamellar-shaped BiOBr (length: 200 nm, width: 150 nm, and an average thickness: around 15 nm) has less toxic effects on cell viability and intracellular organelles than TiO2 (P25) NPs. BiOBr mainly induced late cell apoptosis, while for TiO2, both early apoptosis and late apoptosis were involved. Cell cycle arrest was found in cells on both NPs exposure, and more prominent in TiO2-treated cells. More cellular uptake was achieved after TiO2 exposure, particularly at 10 mu g mL(-1), presence of TiO2 resulted in more than 2-fold increase in cellular granularity compared with BiOBr. Furthermore, TiO2 had a high potential to generate intracellular reactive oxygen species (ROS) in cells, where a 2.7-fold increase in TiO2 group and 2.0-fold increase in BiOBr group at the same concentration of 25 mu g mL-1. Higher cellular uptake and ROS stimulation should contribute to the more hazards of TiO2 than BiOBr NPs. This knowledge is a crucial component in the environmental and human hazard assessment of BiOBr and TiO2 NPs. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available