4.7 Article

Photolysis of three antiviral drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater

Journal

CHEMOSPHERE
Volume 138, Issue -, Pages 792-797

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.08.033

Keywords

Antiviral drug; Photolysis; Aquatic environment; Photosensitizer

Funding

  1. National Basic Research Program [2013CB430403]
  2. National Natural Science Foundation of China [21137001, 21325729]

Ask authors/readers for more resources

Photodegradation is an important elimination process for many pharmaceuticals in surface waters. In this study, photodegradation of three antiviral drugs, acyclovir, zidovudine, and lamivudine, was investigated in pure water, freshwater, and seawater under the irradiation of simulated sunlight. Results showed that zidovudine was easily transformed via direct photolysis, while acyclovir and lamivudine were mainly transformed via indirect photolysis. We found that in freshwater, nitrate enhanced the photodegradation of the three antiviral drugs, bicarbonate promoted the photodegradation of acyclovir, and dissolved organic matter (DOM) accelerated the photolysis of acyclovir and lamivudine. In seawater, the photolysis of acyclovir was not susceptible to Cl-, Br- and ionic strength; however, the photolysis of zidovudine was inhibited by Cl- and Br-, and the photolysis of lamivudine was enhanced by Cl-, Br- and ionic strength. Second-order reaction rate constants for the three antiviral drugs with O-1(2) (k(102)) and (OH)-O-center dot (k(OH)) were also measured. These results are important for fate and ecological risk assessment of the antiviral drugs in natural waters. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available