4.3 Review

Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops

Journal

PHOTOSYNTHETICA
Volume 54, Issue 2, Pages 161-184

Publisher

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.1007/s11099-016-0204-z

Keywords

agricultural sustainability; breeding; C-3, C-4, C-3-C-4 species; canopy; climate change; crop modeling; environmental stress; enzyme; food security; genetic engineering; grain; leaf Kranz anatomy; photorespiration; photosynthetic pathway; protein; starch; storage-root; water; yield

Categories

Ask authors/readers for more resources

Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9-10 billion by the end of the 21(st) century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer's and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P (N)) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C-3 system is another ambitious approach that is currently being applied to the C-3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C-3-CC4 intermediate cassava), have shown high potential P (N), high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P (N) to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available