4.4 Article

Relative Contributions of UVB and UVA to the Photoconversion of (6-4) Photoproducts into their Dewar Valence Isomers

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 92, Issue 4, Pages 587-594

Publisher

WILEY
DOI: 10.1111/php.12605

Keywords

-

Ask authors/readers for more resources

Dewar valence isomers are photoisomerization products of pyrimidine (6-4) pyrimidone photoproducts, a major class of UV-induced DNA lesions, which exhibits a maximal absorption around 320nm. However, Dewar isomers are not produced in significant amounts in cells exposed to biologically relevant doses of UVB. In contrast, they are readily produced when cells are exposed to a combination of UVA and UVB. The present computational work demonstrates that, on the basis of known absorption properties and formation quantum yields, the difference in Dewar formation between the two types of radiation can be explained by the role of normal bases. In the UVB range, at the low level of (6-4) photoproducts present in cells exposed to realistic doses, normal bases are present in overwhelming amounts and absorb the vast majority of the incident photons. In contrast, the absorption of DNA bases is much weaker in the UVA range while that of (6-4) photoproducts is still significant, making photoisomerization possible. This two-photon process makes it difficult to define an action spectrum for the formation of Dewar isomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available