4.5 Article

A universal metric for ferroic energy materials

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2015.0303

Keywords

magnetocaloric; Fe2P; coefficient of refrigerant performance; reversible cycle

Funding

  1. Foundation for Fundamental Research on Matter (FOM), The Netherlands [IPP I28]
  2. BASF New Business

Ask authors/readers for more resources

After almost 20 years of intensive research on magnetocaloric effects near room temperature, magnetic refrigeration with first-ordermagnetocaloric materials has come close to real-life applications. Many materials have been discussed as potential candidates to be used in multicaloric devices. However, phase transitions in ferroic materials are often hysteretic and a metric is needed to estimate the detrimental effects of this hysteresis. We propose the coefficient of refrigerant performance, which compares the net work in a reversible cycle with the positive work on the refrigerant, as a universal metric for ferroic materials. Here, we concentrate on examples from magnetocaloric materials and only consider one barocaloric experiment. This is mainly due to lack of data on electrocaloric materials. It appears that adjusting the field-induced transitions and the hysteresis effects can minimize the losses in first-order materials. This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available