4.4 Review

Hydrogen Sulfide and T-Type Ca2+ Channels in Pain Processing, Neuronal Differentiation and Neuroendocrine Secretion

Journal

PHARMACOLOGY
Volume 99, Issue 3-4, Pages 196-203

Publisher

KARGER
DOI: 10.1159/000449449

Keywords

Hydrogen sulfide; Ca(v)3.2 T-type calcium channel; Prostate; Pain

Ask authors/readers for more resources

Background: Hydrogen sulfide (H2S), a gasotransmitter, is generated from L-cysteine by mainly 3 enzymes, cystathionine-Upsilon-lyase (CSE), cystathionine-beta-synthase, and 3-mercaptopyruvate sulfurtransferase in cooperation with cysteine aminotransferase. The H2S-forming enzymes, particularly CSE, are overexpressed under the pathological conditions such as inflammation, neuronal or neuroendocrine differentiation and cancer development. Given that Ca(v)3.2 T-type Ca2+ channels mediate some of the biological activity of H2S, we focus on the role of the H2S/Ca(v)3.2 pathway in regulating the neuronal and neuroendocrine function. Summary: In the neuronal system, H2S regulates the activity of various ion channels including Ca(v)3.2. Exogenous and endogenous H2S enhances the Ca(v)3.2 channel activity, promoting somatic and visceral pain signaling. The H2S/Ca(v)3.2 pathway also facilitates neuritogenesis or neuronal differentiation. Interestingly, endogenous H2S formed by CSE regulates secretory function by enhancing Ca(v)3.2 channel activity in neuroendocrine-differentiated prostate cancer cells or carotid glomus cells. Key Messages: The H2S/Ca(v)3.2 pathway may serve as therapeutic targets for treatment of intractable pain, neuronal injury, androgen-independent prostate cancer, cardiovascular diseases, etc. (C) 2016 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available