4.7 Article

Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment

Journal

PHARMACOLOGICAL RESEARCH
Volume 108, Issue -, Pages 102-110

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2016.05.005

Keywords

Huntington's disease; microRNA; Circulating microRNA; Biomarker; Plasma; Metabolism

Funding

  1. Ministerio de Economia y Competitividad [DEP2012-39262, SAF2011-25878]
  2. Instituto de Salud Carlos III (FIS) [PI11/00315]
  3. European FEDER Funds
  4. Programa de actividades en tecnologias ALIBIRD-CM de la Comunidad de Madrid [S2013/ABU-2728]

Ask authors/readers for more resources

Huntington's disease (HD) is a hereditary neurodegenerative disease, with peripheral consequences that negatively contribute to quality of life. Circulating microRNAs (cmiRNAs) are being explored for their roles in intercellular communication and gene expression, regulation, which allows gaining insight into the regulation of crosstalk between neuronal and peripheral tissues. Here, we explore the cmiRNA profile of plasma samples from fifteen symptomatic patients, with 40-45 CAG repeats in the HTT gene, and seven healthy matched controls. Isolated miRNAs from plasma samples were run against human miRNome panels, which have sequences for 752 human mature miRNAs. We found that 168 cmiRNAs are altered in symptomatic patients. Considering Bonferroni's correction, miR-877-5p, miR-223-3p, miR-223-5p, miR-30d-5p, miR-128, miR-22-5p, miR-222-3p, miR-338-3p, miR-130b-3p, miR-425-5p, miR-628-3p, miR-361-5p, miR-942 are significantly increased in HD patients as compared with controls. Moreover, after patient's organization according to approved HD scales, miR-122-5p is significantly decreased in HD patients with Unified Huntington's Disease Rating Scale >24, whereas an increase in miR-100-5p levels and a decrease in miR-641 and miR-330-3p levels were recorded when patients were rearranged by Total Functional Capacity. These results suggest that cmiRNA profile could be further modified by disease progression, making cmiRNAs useful as monitoring biomarkers. Analysis of target genes indicated a general overexpression of cmiRNAs implicated in metabolism regulation. Profiling cmiRNA of HD subjects opens the possibility of personalized therapies for different groups of HD patients, based on disease modifiers: regulation of altered pathways might contribute to not only alleviate disease symptoms, but also influence HD progression. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available