4.7 Article

Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.)

Journal

PEST MANAGEMENT SCIENCE
Volume 73, Issue 7, Pages 1402-1409

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.4469

Keywords

UDP-glycosyltransferases; over-expression; Plutella xylostella; chlorantraniliprole; insecticide resistance

Funding

  1. National Natural Science Foundation of China [31171873, 31371956, 31572023]
  2. National Basic Research Programme of China [2012CB114103]

Ask authors/readers for more resources

BACKGROUND: UDP-glycosyltransferases (UGTs) are phase II detoxification enzymes widely distributed within living organisms. Their involvement in the biotransformation of various lipophilic endogenous compounds and phytoalexins in insects has been documented. However, the roles of this enzyme family in insecticide resistance have rarely been reported. Here, the functions of UGTs in chlorantraniliprole resistance in Plutella xylostella were investigated. RESULTS: Treatment with sulfinpyrazone and 5-nitrouracil (both inhibitors of UGT enzymes) significantly increased the toxicity of chlorantraniliprole against the third instar larvae of P. xylostella. Among the 23 UGT transcripts examined, only UGT2B17 was found to be over-expressed (with a range from 30.7-to 77.3-fold) in all four chlorantraniliprole-resistant populations compared to the susceptible one (CHS). The knock-down of UGT2B17 by RNA interference (RNAi) dramatically increased the toxicity of chlorantraniliprole by 27.4% and 29.8% in the CHS and CHR (resistant) populations, respectively. In contrast, exposure to phenobarbital significantly increased the relative expression of UGT2B17 while decreasing the toxicity of chlorantraniliprole to the larvae by 14.0%. CONCLUSION: UGT2B17 is involved in the detoxification of chlorantraniliprole, and its over-expression may play an important role in chlorantraniliprole resistance in P. xylostella. These results shed some light upon and further our understanding of the mechanisms of diamide insecticide resistance in insects. (C) 2016 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available