4.6 Article

Pure and Palladium-Loaded Co3O4 Hollow Hierarchical Nanostructures with Giant and Ultraselective Chemiresistivity to Xylene and Toluene

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 21, Issue 15, Pages 5872-5878

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201405076

Keywords

cobalt; methylbenzenes; nanostructures; palladium; sensors

Funding

  1. National Research Foundation of Korea (NRF) of the Korean government (MEST) [2013R1A2A1A01006545]
  2. Korea University

Ask authors/readers for more resources

Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures consisting of nanosheets have been prepared by solvothermal self-assembly. The nanostructures exhibited an ultrahigh response and selectivity towards pxylene and toluene. The responses (resistance ratio) of the palladium-loaded Co3O4 hollow hierarchical nanostructures to 5 ppm of p-xylene and toluene were as high as 361 and 305, respectively, whereas the selectivity values (response ratios) towards p-xylene and toluene over interference from ethanol were 18.1 and 16.1, respectively. We attributed the giant response and unprecedented high selectivity towards methylbenzenes to the abundant adsorption of oxygen by Co3O4, the high chemiresistive variation in the Co3O4 nanosheets (thickness. 11 nm), and the catalytic promotion of the specific gas-sensing reaction. The morphological design of the p-type Co3O4 nanostructures and loading of the palladium catalyst have paved a new way to monitoring the most representative indoor air pollutants in a highly selective, sensitive, and reliable manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available