4.3 Review

Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease

Journal

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY
Volume 2016, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2016/9812178

Keywords

-

Categories

Funding

  1. Bial Foundation [PT/FB/BL-2014-343]
  2. Fundacao para a Ciencia e a Tecnologia [PTDC/QUI-BIQ/117789/2010, SFRH/BD/101171/2014]
  3. FCT/MCTES/PIDDAC [UID/MULTI/04046/2013]
  4. Consolidation Level Investigator FCT, also from the Fundacao para a Ciencia e a Tecnologia [IF/01046/2014]

Ask authors/readers for more resources

Alzheimer's disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid-beta and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanistic details of this process remain unknown, but a well-established consequence of protein aggregation is synapse dysfunction and neuronal loss in the AD brain. Different pathways including mitochondrial dysfunction, oxidative stress, inflammation, and metal metabolism have been suggested to be implicated in this process. In particular, a body of evidence suggests that neuronal metal ions such as copper, zinc, and iron play important roles in brain function in health and disease states and altered homeostasis and distribution as a common feature across different neurodegenerative diseases and aging. In this focused review, we overview neuronal proteins that are involved in AD and whose metal binding properties may underlie important biochemical and regulatory processes occurring in the brain during the AD pathophysiological process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available