4.5 Article

How Accurate is DFT for Iridium-Mediated Chemistry?

Journal

ORGANOMETALLICS
Volume 35, Issue 22, Pages 3795-3807

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.organomet.6b00377

Keywords

-

Funding

  1. Research Council of Norway through a FRIPRO grant [231706/F20]
  2. Research Council of Norway through a Centre of Excellence Grant [179568/V30]
  3. Notur - The Norwegian Metacenter for Computational Science [nn9330k]

Ask authors/readers for more resources

Iridium chemistry is versatile and widespread, with superior performance for reaction types such as enantioselective hydrogenation and C-H activation. In order to gain insight into the mechanistic details of such systems, density functional theory (DFT) studies are often employed. But how accurate is DFT for modeling iridium-mediated transformations in solution? We have evaluated how well DFT reproduces the energies and reactivities of 11 iridium-mediated transformations, which were carefully chosen to correspond to elementary steps typically encountered in iridium-catalyzed chemistry (bond formation, isomerization, ligand substitution, and ligand association). Five DFT functionals, B3LYP, PBE, PBE0, M06L, and M11L, were evaluated as-is or in combination with an empirical dispersion correction (D2, D3, or D3BJ), leading to 13 combinations. Different solvent models (IEFPCM and SMD) were evaluated, alongside various correction terms such as big basis set effects, counterpoise corrections, frequency scaling, and different entropy modifications. PBE-D type functionals are clearly superior, with PBE-D2,IEFPCM providing average absolute errors for uncorrected Gibbs free energies of 0.9 kcal/mol for the nine reactions with a constant number of moles (1.2 kcal/mol for all 11 reactions). This provides a straightforward and accurate computational protocol for computing free energies of iridium-mediated transformations in solution. However, because the good results may originate from favorable error cancellations of larger and oppositely signed enthalpy and entropy errors, this protocol is recommended for free energies only.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available