4.3 Review

On 20 years of Lophotrochozoa

Journal

ORGANISMS DIVERSITY & EVOLUTION
Volume 16, Issue 2, Pages 329-343

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13127-015-0261-3

Keywords

Lophotrochozoa; Spiralia; Trochozoa; Lophophorata; Platyzoa; Phylogenomic

Funding

  1. U.S. National Science Foundation International Postdoctoral Research Fellowship [DBI-1306538]

Ask authors/readers for more resources

Lophotrochozoa is a protostome clade that includes disparate animals such as molluscs, annelids, bryozoans, and flatworms, giving it the distinction of including the most body plans of any of the three major clades of Bilateria. This extreme morphological disparity has prompted numerous conflicting phylogenetic hypotheses about relationships among lophotrochozoan phyla. Here, I review the current understanding of lophotrochozoan phylogeny with emphasis on recent insights gained through approaches taking advantage of high-throughput DNA sequencing (phylogenomics). Of significance, Platyzoa, a hypothesized clade of mostly small-bodied animals, appears to be an artifact of long-branch attraction. Recent studies recovered Gnathifera (Syndermata, Gnathostomulida, and Micrognathozoa) sister to all other lophotrochozoans and a clade called Rouphozoa (Platyhelminthes and Gastrotricha) sister to the remaining non-gnathiferan lophotrochozoans. Although Bryozoa was traditionally grouped with Brachiopoda and Phoronida (Lophophorata), most molecular studies have supported a clade including Entoprocta, Cycliophora, and Bryozoa (Polyzoa). However, recent phylogenomic work has shown that entoprocts and bryozoans have compositionally heterogeneous genomes that may cause systematic artifacts affecting their phylogenetic placement. Lastly, relationships within Trochozoa (Mollusca, Annelida, and relatives) largely remain ambiguous. Recent work has shown that phylogenomic studies must identify and reduce sources of systematic error, such as amino acid compositional heterogeneity and long-branch attraction. Still, other approaches such as the analysis of rare genomic changes may be needed to overcome challenges to standard phylogenomic approaches. Resolving lophotrochozoan phylogeny will provide important insight into how these complex and diverse body plans evolved and provide a much-needed framework for comparative studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available