4.7 Article

Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization (Southeast China)

Journal

ORE GEOLOGY REVIEWS
Volume 74, Issue -, Pages 63-75

Publisher

ELSEVIER
DOI: 10.1016/j.oregeorev.2015.10.034

Keywords

Hydrothermal zircon; U-Pb dating; Wolframite-bearing quartz veins; Biotite monzogranite; Nanling Range

Funding

  1. National Natural Science Foundation of China [41372065, 40972058]

Ask authors/readers for more resources

The Nanling Range (Southeast China) is well known for its wolframite-bearing-quartz-vein (WQV) tungsten deposit. This study focuses on the geochemistry and geochronology of zircons from the WQV and challenges the current view of the tungsten mineralization in the Nanling Range. The features of the WQV zircons include: (1) pale brown, murky brown, or orange-red color and translucence under microscope; (2) {110} + {101} type crystal form; (3) weak cathodoluminescence; (4) enrichment of Hf (ranging from 1.97 to 7.83 wt.% HfO2), U (ranging from 0.02 to 3.97 wt.% UO2), Th (ranging from 0 to 0.65 wt% ThO2), and P (ranging from 0 to 1.82 wt.% P2O5); and (5) presence of solid (hydrothermal and ore minerals) and fluid inclusions. These features indicate that the WQV zircons crystallized from hydrothermal fluids during tungsten mineralization. The in-situ LA-ICPMS U-Pb results of the WQV zircons from five different tungsten deposits in the Nanling Range yield similar ages, ranging from 134.4 +/- 1.9 Ma to 132.9 +/- 1.5 Ma, approximately 20 million years younger than proposed tungsten ore ages (155 +/- 5 Ma). Several mineralization characteristics and field observations also cast doubt on the current model - Nanling Range tungsten ore is the result of orthomagmatic processes. The zircon characterization method provided in this study could be applied to tungsten metallogenic research in other parts of the world. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available