4.6 Article

Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

Journal

OPTICS LETTERS
Volume 41, Issue 16, Pages 3821-3824

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.41.003821

Keywords

-

Categories

Funding

  1. Scientific Researches Foundation of College of Optoelectronic Science and Engineering
  2. National University of Defense Technology [0100070014007]

Ask authors/readers for more resources

Recently, lead halide perovskite quantum dots have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) has been studied at a broad temperature range, from 80 to 380 K. Two-photon absorption has been investigated and the absorption coefficient is up to 0.085 cm/GW at room temperature. Moreover, the PL spectrum excited by two-photon absorption shows a linear blue-shift (0.32 meV/K) below the temperature of 220 K. However, for higher temperatures, the PL peak approaches a roughly constant value and shows temperature-independent chromaticity up to 380 K. This behavior is distinct from the general red-shift for semiconductors and can be attributed to the result of thermal expansion, electron-phonon interaction and structural phase transition around 360 K. The strong nonlinear absorption and temperature-independent chromaticity of CsPbBr3 QDs observed in temperature range from 220 to 380 K will offer new opportunities in nonlinear photonics, light-harvesting, and light-emitting devices. (C) 2016 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available