4.2 Article

Specific effects of a polar solvent in optical absorption spectra of 1,2-naphthoquinone

Journal

OPTICS AND SPECTROSCOPY
Volume 120, Issue 2, Pages 274-279

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0030400X16010203

Keywords

-

Ask authors/readers for more resources

The optical absorption spectra of 1,2-naphthoquinone in polar (methanol) and nonpolar (n-hexane) solvents are recorded. It is found that the specific effect of a polar solvent, which manifests itself in a hypsochromic shift of the first n pi* band and in a bathochromic shift of the second and third pi pi* bands, is caused by the formation of hydrogen bonds between solvent molecules and the molecule under study and, as a result, by a change in the energy gap between the corresponding occupied and unoccupied molecular orbitals. This result is obtained by TDDFT B3LYP/6-311+G(d, p) calculations of electronic spectra, which, in the case of an isolated 1,2-naphthoquinone molecule, reproduce its experimental optical absorption spectra in n-hexane and, in the case of the same molecule forming a complex with methanol molecules by means of hydrogen bonds, reproduce the spectrum of 1,2-naphthoquinone in methanol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available