4.8 Article

Interface Stability in Solid-State Batteries

Journal

CHEMISTRY OF MATERIALS
Volume 28, Issue 1, Pages 266-273

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b04082

Keywords

-

Funding

  1. Samsung Advanced Institute of Technology
  2. National Science Foundation [ACI-1053575]

Ask authors/readers for more resources

Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into high-performing batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained in part because experimental evaluation of the interface can be very difficult. In this work, we develop a computational methodology to examine the thermodynamics of formation of resistive interfacial phases. The predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance. We calculate that thiophosphate electrolytes have especially high reactivity with high voltage cathodes and a narrow electrochemical stability window. We also find that a number of known electrolytes are not inherently stable but react in situ with the electrode to form passivating but ionically conducting barrier layers. As a reference for experimentalists, we tabulate the stability and expected decomposition products for a wide range of electrolyte, coating, and electrode materials including a number of high-performing combinations that have not yet been attempted experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available