4.8 Article

Structurally Ordered Pt3Cr as Oxygen Reduction Electrocatalyst: Ordering Control and Origin of Enhanced Stability

Journal

CHEMISTRY OF MATERIALS
Volume 27, Issue 21, Pages 7538-7545

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.5b03912

Keywords

-

Funding

  1. Energy Materials Center at Cornell
  2. Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001086]

Ask authors/readers for more resources

Ordered intermetallic phases provide predictable control over structure and electronic effects, not afforded by the widely studied alloys. However, because of the lack of a unifying principle or model for controlling the ordering and particle size, it is still a great challenge to synthesize the desired ordered phase (5 nm and smaller). Here, we employ Pt3Cr as a typical ordered intermetallic phase to comprehensively study the factors that control both the ordering and particle size. Ordered Pt3Cr intermetallic nanopartides (similar to 5 nm) are successfully synthesized using a KCl-matrix method in combination with adjusting annealing conditions. Such structurally ordered Pt3Cr/C exhibits superior kinetics toward the oxygen reduction reaction (ORR), relative to disordered PtCr alloy phases and commercial Pt/C. More importantly, the ordered Pt3Cr intermetallic catalyst shows a minimal loss of activity after 5000 potential cycles (14.7%) and a minimal Cr leaching loss after 4 weeks of testing (13.5%). The mechanism for the enhanced stability of ordered phases is discussed and elucidated. The high stability and activity of ordered Pt3Cr/C make it very promising for application as cathode catalysts for fuel cells. This work provides a guide to optimizing the synthesis of ordered intermetallic catalysts and improving their catalytic performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available