4.5 Article

The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo

Journal

ONCOLOGY REPORTS
Volume 36, Issue 1, Pages 356-364

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/or.2016.4799

Keywords

NVP-BKM120; trastuzumab; RAD001; breast cancer stem cell; PI3K/Akt/mTOR

Categories

Funding

  1. Chinese National Natural Sciences Foundation [81402480]
  2. Tianjin municipal Major Scientific and Technological Special Project for Significant Anticancer Development [12ZCDZSY15700]
  3. Tianjin municipal Natural Sciences Foundation [15JCYBJC28300]
  4. Tianjin Medical University Cancer Institute and Hospital Foundation [1416]

Ask authors/readers for more resources

Deregulation of the phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is common in breast cancer and is frequently associated with resistance to both traditional chemotherapy and targeted drugs. There is a growing body of evidence indicating that a small subpopulation of self-renewing cells, the so called cancer stem cells (CSC), are responsible for the growth of drug resistant secondary tumors. As many CSCs have upregulated the PI3K/Akt signalling pathway, preclinical and clinical studies are addressing the inhibition of this axis to target drug resistance. We evaluated the susceptibility of breast CSCs to NVP-BKM120 (BKM120), a new generation of PI3K-specific inhibitor, when used individually or in combination with trastuzumab or RAD001 both in vitro and in vivo. For this, a stem-like cell population (SC) was enriched from breast cancer cell lines after mammosphere cultures. We demonstrated that BKM120 inhibits growth, generation of drug-resistant derivatives and SC formation in a panel of four breast cancer cell lines: MCF-7, MDA-MB-231, SK-BR-3 and CAL51. Importantly, BKM120 inhibits the PI3K/Akt signalling pathway in SCs from these cell lines. When BKM120 was used in combination with trastuzumab, a targeted therapy to treat HER2-positive breast cancer, we found synergistic cell growth inhibition, generation of drug resistant cells as well as SC formation from SK-BR-3 cells. Importantly, SK-BR-3 xenograft-derived tumors showed marginal growth when the drug combination was used. We also found a similar synergistic anticancer effect of BKM120 in combination with RAD001, an mTOR inhibitor, when treating triple-negative breast cancer cells in vitro and in both MDA-MB-231 and CAL51- mouse xenografts. Moreover, mouse data indicate that these drug combinations are well tolerated and provide the proof-of-concept and rationale to initiate clinical trials in both HER2-positive and triple-negative breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available