4.8 Article

Epigenetic activation of the prostaglandin receptor EP4 promotes resistance to endocrine therapy for breast cancer

Journal

ONCOGENE
Volume 36, Issue 16, Pages 2319-2327

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2016.397

Keywords

-

Funding

  1. NIH [R00 CA127360, R21 LM011199, 2T32GM007067-37, P30 CA91842, UL1 TR000448]
  2. Department of Defense [W81XWH-11-1-0401]
  3. Siteman Cancer Center Breast Cancer Program career development award

Ask authors/readers for more resources

Approximately 75% of breast cancers express estrogen receptor a (ER alpha) and depend on estrogen signals for continued growth. Aromatase inhibitors (AIs) prevent estrogen production and inhibit ER signaling, resulting in decreased cancer recurrence and mortality. Advanced tumors treated with AIs almost always develop resistance to these drugs via the upregulation of alternative growth signals. The mechanisms that drive this resistance-especially epigenetic events that alter gene expression-are, however, not well understood. Genome-wide DNA methylation and expression analysis of cell line models of acquired AI resistance indicated that prostaglandin E2 receptor 4 (PTGER4) is upregulated after demethylation in resistant cells. Knockdown and inhibitor studies demonstrate that PTGER4 is essential for estrogen-independent growth. Our exploratory analysis of downstream signaling indicates that PTGER4 likely promotes AI resistance via ligand-independent activation of the ER alpha-cofactor CARM1. We believe that we have discovered a novel epigenetic mechanism for altering cell signaling and acquiring endocrine therapy resistance. Our findings indicate that PTGER4 is a potential drug target in AI-resistant cancers. In addition, the epigenetic component of PTGER4 regulation suggests that further study of PTGER4 may yield valuable insights into how DNA methylation-targeted diagnoses and treatments can improve AI-resistant breast cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available