4.8 Article

Repression of caspase-3 and RNA-binding protein HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral squamous cell carcinoma

Journal

ONCOGENE
Volume 36, Issue 22, Pages 3137-3148

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/onc.2016.451

Keywords

-

Funding

  1. National Institutes of Health [R01DE022776, R01DE022776S1]
  2. NIH grant [P30 GM103331]

Ask authors/readers for more resources

A well-studied RNA-binding protein Hu Antigen-R (HuR), controls post-transcriptional gene regulation and undergoes stress-activated caspase-3 dependent cleavage in cancer cells. The cleavage products of HuR are known to promote cell death; however, the underlying molecular mechanisms facilitating caspase-3 activation and HuR cleavage remains unknown. Here, we show that HuR cleavage associated with active caspase-3 in oral cancer cells treated with ionizing radiation and chemotherapeutic drug, paclitaxel. We determined that oral cancer cells overexpressing cyclooxygenase-2 (COX-2) limited the cleavage of caspase-3 and HuR, which reduced the rate of cell death in paclitaxel resistant oral cancer cells. Specific inhibition of COX-2 by celecoxib, promoted apoptosis through activation of caspase-3 and cleavage of HuR in paclitaxel-resistant oral cancer cells, both in vitro and in vivo. In addition, oral cancer cells overexpressing cellular HuR increased the half-life of COX-2 mRNA, promoted COX-2 protein expression and exhibited enhanced tumor growth in vivo in comparison with cells expressing a cleavable form of HuR. Finally, our ribonucleoprotein immunoprecipitation and sequencing (RIP-seq) analyses of HuR in oral cancer cells treated with ionizing radiation (IR), determined that HuR cleavage product-1 (HuR-CP1) bound and promoted the expression of mRNAs encoding proteins involved in apoptosis. Our results indicated that, cellular non-cleavable HuR controls COX-2 mRNA expression and enzymatic activity. In addition, overexpressed COX-2 protein repressed the cleavage of caspase-3 and HuR to promote drug resistance and tumor growth. Altogether, our observations support the use of the COX-2 inhibitor celecoxib, in combination with paclitaxel, for the management of paclitaxel resistant oral cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available