4.6 Article

Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope

Journal

OCEAN MODELLING
Volume 101, Issue -, Pages 43-58

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ocemod.2016.03.002

Keywords

Near bottom circulation; Continental slope; Submesoscales; ROMS; USA; Northern Gulf of Mexico

Funding

  1. Gulf of Mexico Research Initiative
  2. Office of Naval Research [N00014-12-1-0939]

Ask authors/readers for more resources

This study examines the mesoscale and submesoscale circulations along the continental slope in the northern Gulf of Mexico at depths greater than 1000 m. The investigation is performed using a regional model run at two horizontal grid resolutions, 5 km and 1.6 km, over a 3 year period, from January 2010 to December 2012. Ageostrophic submesoscale eddies and vorticity filaments populate the continental slope, and they are stronger and more abundant in the simulation at higher resolution, as to be expected. They are formed from horizontal shear layers at the edges of highly intermittent, bottom-intensified, along-slope boundary currents and in the cores of those currents where they are confined to steep slopes. Two different flow regimes are identified. The first applies to the De Soto Canyon that is characterized by weak mean currents and, in the high-resolution run, by intense but few submesoscale eddies that form near preferentially along the Florida continental slope. The second is found in the remainder of the domain, where the mean currents are stronger and the circulation is highly variable in both space and time, and the vorticity field is populated, in the high-resolution case, by numerous vorticity filaments and short-lived eddies. Lagrangian tracers are deployed at different times along the continental shelf below 10 0 0 m depth to quantify the impact of the submesoscale currents on transport and mixing. The modeled absolute dispersion is, on average, independent of horizontal resolution, while mixing, quantified by finite-size Lyapunov exponents and vertical relative dispersion, increases when submesoscale processes are present. Dispersion in the De Soto Canyon is smaller than in the rest of the model domain and less affected by resolution. This is further confirmed comparing the evolution of passive dye fields deployed in De Soto Canyon near the Macondo Prospect, where the Deepwater Horizon rig exploded in 2010, and at the largest known natural hydrocarbon seep in the northern Gulf, known as GC600, located a few hundred kilometers to the west of the rig wellhead. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available