4.3 Article

Sediment resuspension in tidally dominated coastal environments: new insights into the threshold for initial movement

Journal

OCEAN DYNAMICS
Volume 66, Issue 3, Pages 401-417

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10236-016-0930-6

Keywords

Sediment resuspension; Suspended sediment concentration; Intermittent turbulence; Threshold models; Critical shear stress for erosion; Yellow Sea

Categories

Funding

  1. Major State Basic Research Development Program [2013CB956502]
  2. Natural Science Foundation of China [41376044]
  3. Geological environment investigation and evaluation on Jiangsu Coastal Economic Zone project [1212011220005]
  4. PAPD of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

An understanding of sediment resuspension and its threshold, for initial movement in shallow marine environments, is of great importance in coastal geomorphology, ecology, and harbor/fishery management applications. In the present study, in situ measurements of tides, current velocities, waves, and suspended sediment concentrations (SSCs) were measured at three shallow water sites with different tidal current patterns and seabed sediment grain sizes. The sites were associated with the radial sand ridge system (B4 and D2, rectilinear currents) and the Great Yangtze Shoal (D1, rotatory currents), in the southern Yellow Sea, China, both representing tidally dominated environments. The SSC data were analyzed to identify the controlling factors associated with resuspension and advection processes. There is a significant correlation between the near-bed SSC and shear stress, indicating that SSC variations are dominated by resuspension processes. Based on integrated field measurements of SSCs and hydrodynamics, the bed shear stresses of currents and waves were calculated, and the critical shear stresses for seabed erosion of the three sites were determined. At D2 (non-cohesive sediment) and B4/D1 (cohesive sediment), the critical shear stresses for seabed erosion (or resuspension) were estimated to be 0.11 and 0.07/0.09 N m(-2), respectively. Although this result is reasonable when only the three sites are compared, both values are lower than predicted by existing threshold models, with a difference between 30 and 83 %. Such discrepancies can be related to intermittent turbulence events. For both sites, statistical and quadrant analyses have revealed significant correlations between near-bed SSC variations and intermittent turbulence events. This observation implies that the threshold conditions using the critical bed shear stress, derived from the current velocity profile, have a spatial scale effect: on a small scale (e.g., a flume in laboratory), the threshold can be predicted by the current velocity profile method; however, on larger scales (e.g., shallow marine environments), the threshold is reduced because of the enhanced intensity of intermittent turbulence events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available