4.0 Article

Analysis of hydrazine in smokeless tobacco products by gas chromatography-mass spectrometry

Journal

CHEMISTRY CENTRAL JOURNAL
Volume 9, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/s13065-015-0089-0

Keywords

Hydrazine; Smokeless tobacco products; Snus; Snuff

Funding

  1. British American Tobacco (BAT)
  2. Tobacco Manufacturers (including BAT)

Ask authors/readers for more resources

Background: Due to the lower health risks associated with the use of certain categories of smokeless tobacco products (STPs) such as Swedish snus, there is interest in the comparative levels of toxic chemical constituents in different types of STPs. A method has been developed and validated for the analysis of hydrazine in STPs. Seventy four commercial STPs from the US and Sweden, representing 80-90% of the 2010 market share for all the major STP categories in these two countries, as well as three reference STPs, were analysed for hydrazine. Results: Aqueous extracts of the STPs were treated with excess pentafluorobenzaldehyde (PFB), which reacted with hydrazine in solution to form decafluorobenzaldehyde azine (DFBA). DFBA was partitioned into hexane and then quantified by gas chromatography-mass spectrometry (GC-MS). The method was validated using five different types of STP, was linear in the range 8-170 ng/mL, and had limits of quantification (LOQ) from 26-53 ng of hydrazine per g of STP (as sold). The method was applied to the analysis of 74 contemporary STPs commercially available in the United States and Sweden, none of which were found to contain hydrazine above the LOQ or LOD. Trace levels of compounds showing chromatographic and mass spectral features consistent with hydrazine were identified at very low levels (sub-limit of detection, < 10 ng/g) in the chromatograms of less than half of the 74 STPs examined; in contrast, for 40 of the STPs no evidence for the presence of hydrazine was observed. Where present, the levels of compounds consistent with hydrazine were estimated to be at least an order of magnitude lower than the only previous study to have quantified hydrazine in tobacco. Conclusions: Our results show that hydrazine is not a prevalent constituent of STPs, and when present is not quantifiable using currently available analytical methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available