4.3 Article Proceedings Paper

Ion beam analysis and co-sputtering simulation (CO-SS) of bi-metal films produced by magnetron co-sputtering

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2015.09.034

Keywords

Magnetron sputtering simulation; RBS techniques; Co-sputtering simulation

Ask authors/readers for more resources

Magnetron sputtering is widely used to deposit thin films on different types of substrates. An important application of this method is to make multicomponent thin films using co-sputtering, where two or more elements are included in the target. The thickness and elemental composition of the films depend on the experimental parameters used, the system geometry and the spatial distribution of the elements in the target. If the target is made of two spatially separate pieces of the materials, then the composition of the deposit depends on a combination of the relative areas, the sputtering yield and the angular distribution of the emission of the sputtered flux of each material. In this work, a co-sputtering simulation program, known as CO-SS, was developed to simulate the thickness and composition of metal films produced by DC magnetron sputtering (Al) and co-sputtering (Al + Ti). The CO-SS code models the angular distribution of particles ejected by sputtering from the target, where this is assumed to vary as cos(n) beta, where n is a free parameter and beta is the angle of ejection relative to the normal to the surface of the target, and the sputtering yield of each material. The program also takes into account other geometry factors such as the distance between the target and the substrate, and the size of the substrate. Rutherford backscattering (RBS) using He-4 was employed to measure the thickness and the composition of the films deposited on glass cover slides in order to assess the CO-SS program. The film thickness was also measured by profilometry. The CO-SS code was found to accurately model the experimental results for both the Al and Ti/Al films. The CO-SS code is freely available for use from http://demonstrations.wolfram.com/CoSputteringSimulationCOSS/. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available