4.4 Article

Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress

Journal

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
Volume 59, Issue -, Pages 42-53

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2016.07.001

Keywords

Nitric oxide; Glutathione; Glutathione reductase; Salt stress; Melatonin; Sunflower

Funding

  1. University Grants Commission, Delhi [SCB/BOt/2015-16]
  2. University of Delhi [SCB/BOt/RD/2015-16]

Ask authors/readers for more resources

The present findings demonstrate significant modulation of total glutathione content, reduced glutathione (GSH) content, oxidized glutathione (GSSG) content, GSH/GSSG ratio and glutathione reductase (GR; EC 1.6.4.2) activity in dark-grown seedling cotyledons in response to salt-stress (120 mM NaCl) in sunflower (Helianthus annuus L) seedlings. A differential spatial distribution of GR activity (monitored by confocal laser scanning microscopic (CLSM) imaging) is also evident. Melatonin and nitric oxide (NO) differentially ameliorate salt stress effect by modulating GR activity and GSH content in seedling cotyledons. Total glutathione content (GSH + GSSG) exhibit a seedling age-dependent increase in the cotyledons, more so in salt-stressed conditions and when subjected to melatonin treatment. Seedlings raised in presence of 15 mu M of melatonin exhibit significant increase in GR activity in cotyledon homogenates (10,000 g supernatant) coinciding with significant increase in GSH content. GSSG content and GSH/GSSG ratio also increased due to melatonin treatment. A correlation is thus evident in NaCl-sensitized modulation of GSH content and GR activity by melatonin. GSH content is down regulated by NO provided as 250 mu M of sodium nitroprusside (SNP) although total glutathione content remained in similar range. A reversal of response (enhanced total glutathione accumulation) by NO scavenger (cPTIO) highlights the critical role of NO in modulating glutathione homeostasis. SNP lowers the activity of hydroxyindole-O-methyltransferase (HIOMT) - a regulatory enzyme in melatonin biosynthesis in control seedlings whereas its activity is upregulated in salt-stressed seedling cotyledons. Melatonin content of seedling cotyledons is also modulated by NO. NO and melatonin thus seem to modulate GR activity and GSH content during seedling growth under salt stress. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available