4.6 Article

Encoding Error Correction in an Integrated Photonic Chip

Journal

PRX QUANTUM
Volume 4, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.4.030340

Keywords

-

Ask authors/readers for more resources

In this study, a quantum error-correction code is implemented on a silicon photonic chip using a five-qubit linear cluster state, showcasing its capability in identifying and correcting single-qubit errors. The reconstructed encoded quantum information achieves a high average state fidelity. Furthermore, the study extends the scheme to demonstrate fault-tolerant measurement-based quantum computation on stabilizer formalism.
Integrated photonics provides a versatile platform for encoding and processing quantum information. However, the encoded quantum states are sensitive to noise, which limits their capability to perform complicated quantum computations. Here, we use a five-qubit linear cluster state on a silicon photonic chip to implement a quantum error-correction code and demonstrate its capability of identifying and correcting a single-qubit error. The encoded quantum information is reconstructed from a single-qubit error and an average state fidelity of 0.863 +/- 0.032 is achieved for different input states. We further extend the scheme to demonstrate a fault-tolerant measurement-based quantum computation (MBQC) on stabilizer formal-ism that allows us to redo the qubit operation against the failure of the teleportation process. Our work provides a proof-of-concept working prototype of error correction and MBQC in an integrated photonic chip.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available