4.7 Article

Quantum Correlation Generation Capability of Experimental Processes

Journal

ADVANCED QUANTUM TECHNOLOGIES
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/qute.202300113

Keywords

quantum benchmarks; quantum computers; quantum correlations; quantum process capability

Ask authors/readers for more resources

EPR steering and Bell nonlocality are two different types of correlations predicted by quantum mechanics, which have motivated the exploration of quantum mechanics and become important resources for quantum-information processing. This study introduces a method for characterizing the creation of EPR steering and Bell nonlocality in dynamical processes, allowing the quantification and identification of the capability of experimental processes to create quantum correlations. The method is demonstrated using controlled-phase operations on IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers, providing a useful diagnostic tool for evaluating nonclassical correlation creation in noisy intermediate scale quantum devices.
Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, a method for characterizing the creation of EPR steering and Bell nonlocality is introduced for dynamical processes in experiments. It shows that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. It demonstrates this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that the method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available