4.0 Article

A Hypertuned Lightweight and Scalable LSTM Model for Hybrid Network Intrusion Detection

Journal

TECHNOLOGIES
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/technologies11050121

Keywords

deep learning; machine learning; Long-short-term-memory (LSTM); cyberattacks; network intrusion detection; cyber security

Ask authors/readers for more resources

Given the increasing frequency of network attacks, there is an urgent need for more effective network security measures. This research paper introduces a deep learning-based approach for network intrusion detection to overcome the challenges faced by AI-driven methods. The proposed approach utilizes various classification algorithms and achieves impressive accuracy rates on multiple datasets.
Given the increasing frequency of network attacks, there is an urgent need for more effective network security measures. While traditional approaches such as firewalls and data encryption have been implemented, there is still room for improvement in their effectiveness. To effectively address this concern, it is essential to integrate Artificial Intelligence (AI)-based solutions into historical methods. However, AI-driven approaches often encounter challenges, including lower detection rates and the complexity of feature engineering requirements. Finding solutions to overcome these hurdles is critical for enhancing the effectiveness of intrusion detection systems. This research paper introduces a deep learning-based approach for network intrusion detection to overcome these challenges. The proposed approach utilizes various classification algorithms, including the AutoEncoder (AE), Long-short-term-memory (LSTM), Multi-Layer Perceptron (MLP), Linear Support Vector Machine (L-SVM), Quantum Support Vector Machine (Q-SVM), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). To validate the effectiveness of the proposed approach, three datasets, namely IOT23, CICIDS2017, and NSL KDD, are used for experimentation. The results demonstrate impressive accuracy, particularly with the LSTM algorithm, achieving a 97.7% accuracy rate on the NSL KDD dataset, 99% accuracy rate on the CICIDS2017 dataset, and 98.7% accuracy on the IOT23 dataset. These findings highlight the potential of deep learning algorithms in enhancing network intrusion detection. By providing network administrators with robust security measures for accurate and timely intrusion detection, the proposed approach contributes to network safety and helps mitigate the impact of network attacks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available