4.6 Article

Anisotropic density fluctuations, plasmons, and Friedel oscillations in nodal line semimetal

Journal

NEW JOURNAL OF PHYSICS
Volume 18, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/18/4/043010

Keywords

-

Funding

  1. NSERC of Canada
  2. NSF [NSF PHY11-25915]

Ask authors/readers for more resources

Motivated by recent experimental efforts on three-dimensional semimetals, we investigate the static and dynamic density response of the nodal line semimetal by computing the polarizability for both undoped and doped cases. The nodal line semimetal in the absence of doping is characterized by a ring-shape zero energy contour in momentum space, which may be considered as a collection of Dirac points. In the doped case, the Fermi surface has a torus shape and two independent processes of the momentum transfer contribute to the singular features of the polarizability even though we only have a single Fermi surface. In the static limit, there exist two independent singularities in the second derivative of the static polarizability. This results in the highly anisotropic Friedel oscillations which show the angle-dependent algebraic power law and the beat phenomena in the oscillatory electron density near a charged impurity. Furthermore, the dynamical polarizability has two singular lines along (h) over bar omega = gp and (h) over bar omega = gamma p sin eta, where eta is the angle between the external momentum p and the plane where the nodal ring lies. From the dynamical polarizability, we obtain the plasmon modes in the doped case, which show anisotropic dispersions and angle-dependent plasma frequencies. Qualitative differences between the low and high doping regimes are discussed in light of future experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available