4.6 Article

Microwave assisted fast formation of Sn(MoO4)2 nano-assemblies on DNA scaffold for application in lithium-ion batteries

Journal

NEW JOURNAL OF CHEMISTRY
Volume 40, Issue 7, Pages 6185-6199

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nj00343e

Keywords

-

Ask authors/readers for more resources

Self-assembled and aggregated Sn(MoO4)(2) nano-assemblies having chain-like morphology on DNA scaffolds have been synthesized for the first time utilizing a simple microwave heating route within 7 min. Sn(MoO4)(2) nano-assemblies are prepared from a mixture of molybdic acid, NaOH and Sn(II) chloride in the presence of DNA. The eventual diameter of the chains and the individual size of the particles can be tuned by optimizing the reagent concentrations and other reaction parameters during synthesis. The average size of the individual Sn(MoO4)(2) particles and the average diameter of the aggregated chains are similar to 1-4 nm and similar to 65 +/- 15 nm respectively. Such Sn(MoO4)(2) nano-assemblies have been explored as potential anode materials for the first time in lithium-ion battery (LIB) applications. From LIB study, it was observed that the synthesized anode is capable of delivering a steady state capacity of 400 mA h g(-1) up to 200 cycles under the influence of 50 mA g(-1) current density. Further, the anode material is suitable for use as a rated capacity anode because of its tolerance of high current density, up to 400 mA g(-1). Of the two different morphologies produced, the Sn(MoO4)(2)/C electrode containing smaller particles shows better performance compared to the one containing larger particles, due to the increased BET surface area which enhanced lithium diffusion kinetics and retention of capacity. The present study can be further extended for the generation of a wide variety of other novel materials in biological scaffolds with uniform morphology for multidisciplinary energy related applications and in catalysis studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available