4.8 Article

Cortical-Bone Fragility - Insights from sFRP4 Deficiency in Pyle's Disease

Journal

NEW ENGLAND JOURNAL OF MEDICINE
Volume 374, Issue 26, Pages 2553-2562

Publisher

MASSACHUSETTS MEDICAL SOC
DOI: 10.1056/NEJMoa1509342

Keywords

-

Funding

  1. Swiss National Foundation
  2. National Institutes of Health
  3. Medical Research Council [MR/K006312/1] Funding Source: researchfish
  4. National Institute for Health Research [NF-SI-0513-10073] Funding Source: researchfish
  5. MRC [MR/K006312/1] Funding Source: UKRI

Ask authors/readers for more resources

BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to non-vertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available