4.5 Article

Secure Blockchain-Enabled Authentication Key Management Framework with Big Data Analytics for Drones in Networks Beyond 5G Applications

Journal

DRONES
Volume 7, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/drones7080508

Keywords

Internet of Drones (IoD); unmanned aerial vehicles (UAVs); cyber-attacks; blockchain; data analytics; security

Categories

Ask authors/readers for more resources

The combination of drones and the Internet has led to the emergence of the Internet of Drones (IoD). This paper proposes a secure blockchain-enabled authentication key management framework for drones in networks beyond 5G. The system's security is demonstrated through detailed analysis and formal verification, showing its resistance against various attacks.
One of the most significant recent advances in technology is the advent of unmanned aerial vehicles (UAVs), i.e., drones. They have widened the scope of possible applications and provided a platform for a wide range of creative responses to a variety of challenges. The Internet of Drones (IoD) is a relatively new concept that has arisen as a consequence of the combination of drones and the Internet. The fifth-generation (5G) and beyond cellular networks (i.e., drones in networks beyond 5G) are promising solutions for achieving safe drone operations and applications. They may have many applications, like surveillance or urban areas, security, surveillance, retaliation, delivering items, smart farming, film production, capturing nature videos, and many more. Due to the fact that it is susceptible to a wide variety of cyber-attacks, there are certain concerns regarding the privacy and security of IoD communications. In this paper, a secure blockchain-enabled authentication key management framework with the big data analytics feature for drones in networks beyond 5G applications is proposed (in short, SBBDA-IoD). The security of SBBDA-IoD against multiple attacks is demonstrated through a detailed security analysis. The Scyther tool is used to perform a formal security verification test on the SBBDA-IoD's security, confirming the system's resistance to various potential attacks. A detailed comparative analysis has identified that SBBDA-IoD outperforms the other schemes by a significant margin. Finally, a real-world implementation of SBBDA-IoD is shown to evaluate its effect on several measures of performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available