4.5 Article

A SUPPORT VECTOR MACHINE-BASED METHOD TO IDENTIFY MILD COGNITIVE IMPAIRMENT WITH MULTI-LEVEL CHARACTERISTICS OF MAGNETIC RESONANCE IMAGING

Journal

NEUROSCIENCE
Volume 331, Issue -, Pages 169-176

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2016.06.025

Keywords

mild cognitive impairment; magnetic resonance imaging; support vector machine; Hurst exponent

Categories

Funding

  1. National Natural Science Foundation of China [81220108007, 81430037, 31371007]
  2. Medicine and Clinical Cooperative Research Program of Capital Medical University [13JL04, 14JL80, 15JL18, 15JL58, 16JL25]
  3. Beijing Natural Science Foundation [4122018]
  4. Beijing Municipal Science & Technology Commission Grant [Z131100006813022]
  5. open project of Laboratory of Brain Disorders, Ministry of Science and Technology [2015NZDJ04]

Ask authors/readers for more resources

Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer's disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI). This method adopted a radial basis function (RBF) as the kernel function, and a grid search method to optimize the two parameters of SVM. The calculated characteristics, i.e., the Hurst exponent (HE), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and gray matter density (GMD), were adopted as the classification features. A leave-one-out cross-validation (LOOCV) was used to evaluate the classification performance of the method. Applying the proposed method to the experimental data from 29 MCI patients and 33 healthy subjects, we achieved a classification accuracy of up to 96.77%, with a sensitivity of 93.10% and a specificity of 100%, and the area under the curve (AUC) yielded up to 0.97. Furthermore, the most discriminative features for classification were found to predominantly involve default-mode regions, such as hippocampus (HIP), parahippocampal gyrus (PHG), posterior cingulate gyrus (PCG) and middle frontal gyrus (MFG), and subcortical regions such as lentiform nucleus (LN) and amygdala (AMYG). Therefore, our method is promising in distinguishing MCI patients from NCs and may be useful for the diagnosis of MCI. (C) 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available