4.5 Article

CORTICAL CONTROL OF ANTICIPATORY POSTURAL ADJUSTMENTS PRIOR TO STEPPING

Journal

NEUROSCIENCE
Volume 313, Issue -, Pages 99-109

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2015.11.032

Keywords

stepping; balance control; anticipatory postural adjustments; readiness potential; supplementary motor area; event-related desynchronization

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Human bipedal balance control is achieved either reactively or predictively by a distributed network of neural areas within the central nervous system with a potential role for cerebral cortex. While the role of the cortex in reactive balance has been widely explored, only few studies have addressed the cortical activations related to predictive balance control. The present study investigated the cortical activations related to the preparation and execution of anticipatory postural adjustment (APA) that precede a step. This study also examined whether the preparatory cortical activations related to a specific movement is dependent on the context of control (postural component vs. focal component). Ground reaction forces and electroencephalographic (EEG) data were recorded from 14 healthy adults while they performed lateral weight shift and lateral stepping with and without initially preloading their weight to the stance leg. EEG analysis revealed that there were distinct movement-related potentials (MRPs) with concurrent event-related desynchronization (ERD) of mu and beta rhythms prior to the onset of APA and also to the onset of foot-off during lateral stepping in the fronto-central cortical areas. Also, the MRPs and ERD prior to the onset of APA and onset of lateral weight shift were not significantly different suggesting the comparable cortical activations for the generation of postural and focal movements. The present study reveals the occurrence of cortical activation prior to the execution of an APA that precedes a step. Importantly, this cortical activity appears independent of the context of the movement. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available