4.3 Article

Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma

Journal

NEUROREPORT
Volume 27, Issue 2, Pages 110-115

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/WNR.0000000000000506

Keywords

apoptosis; growth; invasion; lactate dehydrogenase A; Warburg effect

Categories

Ask authors/readers for more resources

Reprogrammed glucose metabolism is an emerging hallmark of cancer cells, which show a unique metabolic phenotype known as the Warburg effect. Lactate dehydrogenase A (LDHA), a key enzyme in the glycolytic process, executes the final step by conversion of lactate into pyruvate. However, little is known about the roles of LDHA in human glioblastoma (GBM). In this study, we aimed to determine the effects of LDHA and elucidate related underlying mechanisms. Data derived from Oncomine database showed that LDHA is commonly upregulated in GBM tissues in comparison with corresponding normal controls. Silencing of LDHA expression resulted in reduced glycolysis, decreased cell growth, increased cell apoptosis, and attenuated invasive ability. In the presence of 2-deoxyglucose, a glycolysis inhibitor, the oncogenic activities of LDHA were completely blocked. These findings provide evidence of the cellular functions of LDHA in the progression of GBM and suggest that LDHA might act as a potential therapeutic target for GBM treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available