4.0 Article

In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management

Journal

Publisher

SPRINGERNATURE
DOI: 10.1007/s40789-023-00614-4

Keywords

In-situ coal seam gas content; Direct desorption method; Gas component; Sorption capacity; Coal and gas outburst

Ask authors/readers for more resources

This study investigates the in-situ gas content and gas sorption capacity of a representative coal seam in the Sydney basin. The results show variations in gas content and sorption capacity among different sections, and reveal some correlations. The insights derived from this study are important for developing effective gas management strategies and improving the safety and efficiency of coal mining operations.
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO2 composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q1, Q2, and Q3) of the coal seam. The results show that in-situ total gas content (QT) ranges from 9.48 m3/t for the A2 section to 14.80 m3/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q2 demonstrates the highest contribution to QT, ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO2 sorption behavior, with fit coefficients (R2) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q3) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q1 and Q2 gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of effective gas management strategies and enhance the safety and efficiency of coal mining operations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available