4.7 Article

Effects of novel subtype selective M-current activators on spinal reflexes in vitro: Comparison with retigabine

Journal

NEUROPHARMACOLOGY
Volume 109, Issue -, Pages 131-138

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2016.05.025

Keywords

ML213; ICA-069673; KCNQ channels; M-current; Pain

Funding

  1. Spanish Ministry of Economy and Competitiveness [BFU 2012-37905]
  2. University of Alcala [CCG2015/BIO-023]

Ask authors/readers for more resources

The activation of Kv7 channels and the resulting M-current is a powerful mechanism to control neuronal excitability with profound effects in pain pathways. Despite the lack of specific data on the expression and role of these channels in nociceptive processing, much attention has been paid at exploring their potential value as targets for analgesia. Here we have characterized the spinal actions of two novel subunit selective Kv7 activators, ICA-069673 and ML213, and compared their effects to those of retigabine that acts with similar affinity on all neuronal Kv7 channels. Spinal reflexes were recorded in a mouse spinal cord in vitro preparation to allow the testing of the compounds on native spinal pathways at known concentrations. As retigabine, novel compounds depressed spinal segmental transmission with particularly strong effects on wind up, showing an adequate pro-analgesic profile. ML213 presented the highest potency. In contrast to retigabine, the effects of ICA-069673 and ML213 were blocked by XE-991 even at the highest concentrations used, suggesting specific effect on Kv7 channels. In addition, the effects of ICA-069673 on repetitive stimulation are consistent with a mode of action involving state or activity dependent interaction with the channels. Compared to retigabine, novel Kv7 openers maintain strong depressant effects on spinal nociceptive transmission showing an improved specificity on Kv7 channels. The differential effects obtained with these Kv7 openers may indicate the existence of several Kv7 conformations in spinal circuits. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available