4.2 Review

Neuroimmunological interactions in stroke

Journal

NEUROLOGIA
Volume 34, Issue 5, Pages 326-335

Publisher

ELSEVIER ESPANA SLU
DOI: 10.1016/j.nrl.2016.08.003

Keywords

Stroke; Inflammation; Penumbra; Neurogenesis; Neuroprotection

Ask authors/readers for more resources

Introduction: Stroke is one of the leading causes of death in the world; its incidence is increasing due to increased life expectancy. However, treatment options for these patients are limited since no clinically effective drugs have been developed to date. Development: According to clinical evidence, a number of neurochemical changes take place after stroke, including energy depletion, increased free radical synthesis, calcium accumulation, neurotransmitter imbalance, excitotoxicity, and, at a later stage, immune system activation leading to inflammation. Immune response has been shown to be a major factor in disease progression. The release of proinflammatory cytokines such as TNF increase brain damage secondary to excitotoxicity and calcium accumulation, and promote free radical synthesis and cell death through various mechanisms. On the other hand, certain anti-inflammatory cytokines, such as IL-10 and IL-4, have been shown to have a neuroprotective effect and even promote neurogenesis and synapse remodeling, which makes immune modulation a promising treatment approach. Conclusions: Understanding the relationship between the immune system and the nervous system not only deepens our knowledge of stroke but also provides new diagnostic, prognostic, and therapeutic strategies that may increase the quality of life of stroke patients. (C) 2016 Sociedad Espanola de Neurologia. Published by Elsevier Espana, S.L.U.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available