4.6 Article Proceedings Paper

Hybrid machine learning forecasting of solar radiation values

Journal

NEUROCOMPUTING
Volume 176, Issue -, Pages 48-59

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2015.02.078

Keywords

Solar radiation; Support Vector Regression; Gradient Boosting; Random Forests; Numerical Weather Prediction

Ask authors/readers for more resources

The constant expansion of solar energy has made the accurate forecasting of radiation an important issue. In this work we apply Support Vector Regression (SVR), Gradient Boosted Regression (GBR), Random Forest Regression (RFR) as well as a hybrid method to combine them to downscale and improve 3-h accumulated radiation forecasts provided by Numerical Weather Prediction (NWP) systems for seven locations in Spain. We use either direct 3-h aggregated radiation forecasts or we build first global accumulated daily predictions and disaggregate them into 3-h values, with both approaches out-performing the base NWP forecasts. We also show how to disaggregate the 3-h forecasts into hourly values using interpolation based on clear sky (CS) theoretical and experimental radiation models, with the disaggregated forecasts again being better than the base NWP ones and where empirical CS interpolation yields the best results. Besides providing ample background on a problem that offers many opportunities to the Machine Learning (ML) community, our study shows that ML methods or, more generally, hybrid artificial intelligence systems are quite effective and, hence, relevant for solar radiation prediction. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available