4.5 Article

Mdivi-1 Protects Epileptic Hippocampal Neurons from Apoptosis via Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress in Vitro

Journal

NEUROCHEMICAL RESEARCH
Volume 41, Issue 6, Pages 1335-1342

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-016-1835-y

Keywords

Mitochondrial fission; Mdivi-1; Epilepsy; Apoptosis; Oxidative stress

Funding

  1. National Natural Science Foundation of China [81,571,260, 81371438]
  2. Youth Innovation Found of the First Affiliated Hospital of the Zhengzhou University

Ask authors/readers for more resources

Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of the mitochondrial fission protein dynamin-related protein 1, has been proposed to have a neuroprotective effect on hippocampal neurons in animal models of epilepsy. However, the effect of mdivi-1 on epileptic neuronal death in vitro remains unknown. Therefore, we investigated the effect of mdivi-1 and the underlying mechanisms in the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE) in vitro. We found that mitochondrial fission was increased in the HNC model of AE and inhibition of mitochondrial fission by mdivi-1 significantly decreased neuronal apoptosis induced by AE. In addition, mdivi-1 pretreatment significantly attenuated oxidative stress induced by AE characterized by decrease of reactive oxygen species (ROS) production and malondialdehyde level and by increase of superoxide dismutase activity. Moreover, mdivi-1 pretreatment significantly decreased endoplasmic reticulum (ER) stress markers glucose-regulated protein 78, C/EBP homologous protein expression and caspase-3 activation. Altogether, our findings suggest that mdivi-1 protected against AE-induced hippocampal neuronal apoptosis in vitro via decreasing ROS-mediated oxidative stress and ER stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available