4.3 Article

Parvalbumin interneurons constrain the size of the lateral amygdala engram

Journal

NEUROBIOLOGY OF LEARNING AND MEMORY
Volume 135, Issue -, Pages 91-99

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nlm.2016.07.007

Keywords

Engram; Parvalbumin; Lateral amygdala; Sparse coding; Memory; Fear

Funding

  1. Canadian Institutes of Health Research [CIHR] [MOP-74650, FDN143227]
  2. Natural Science and Engineering Council of Canada [NSERC]
  3. Brain Canada
  4. Brain & Behavior Foundation

Ask authors/readers for more resources

Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV+) interneurons of the amygdala. We find that silencing PV+ neurons during conditioning increases the size of the engram, especially in the dorsal sub nucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available