4.6 Review

Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR

Journal

NEURAL REGENERATION RESEARCH
Volume 11, Issue 3, Pages 372-385

Publisher

WOLTERS KLUWER MEDKNOW PUBLICATIONS
DOI: 10.4103/1673-5374.179032

Keywords

Akt; AMP activated protein kinase (AMPK); apoptosis; Alzheimer's disease; autophagy; beta-cell; cancer; cardiovascular disease; caspase; CCN family; diabetes mellitus; epidermal growth factor; erythropoietin; fibroblast growth factor; forkhead transcription factors; FoxO; FRAP1; hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2); insulin; mechanistic target of rapamycin (mTOR); mTOR Complex 1 (mT ORC1); mTOR Complex 2 (mTORC2); nicotinamide; nicotinamide adenine dinucleotide (NAD(+)); non-communicable diseases; oxidative stress; phosphoinositide 3-kinase (PI 3-K); programmed cell death; silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1); sirtuin; stem cells; wingless; Wnt; Wnt1 inducible signaling pathway protein 1 (WISP1)

Funding

  1. American Diabetes Association
  2. American Heart Association
  3. NIH NIEHS
  4. NIH NIA
  5. NIH NINDS
  6. NIH ARRA

Ask authors/readers for more resources

Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic beta-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available