4.5 Article

Graph distance and feature-guided multi-view clustering: A novel method for clustering urban buildings

Journal

TRANSACTIONS IN GIS
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/tgis.13113

Keywords

-

Categories

Ask authors/readers for more resources

Urban buildings are crucial for urban applications, and accurately identifying their spatial configurations and grouping is essential. However, existing building clustering methods have limitations in dealing with complex spatial configurations. To address this issue, this article proposes a novel multi-view building clustering method that captures cross-view information from spatial and nonspatial features.
Urban buildings are an integral component of urban space, and accurately identifying their spatial configurations and grouping them is vital for various urban applications. However, most existing building clustering methods only utilize the original spatial and nonspatial features of buildings, disregarding the potential value of complementary information from multiple perspectives. This limitation hinders their effectiveness in scenarios with intricate spatial configurations. To address this, this article proposes a novel multi-view building clustering method that captures cross-view information from spatial and nonspatial features. Drawing inspiration from both spatial proximity characteristics and nonspatial attributes, three views are established, including two spatial distance graphs (centroid distance graph and the nearest outlier distance graph) and a building attribute graph (multiple-attribute graph). The three graphs undergo iterative cross-diffusion processes to amplify similarities within each predefined graph view, culminating in their fusion into a unified graph. This fusion facilitates the comprehensive correlation and mutual enhancement of spatial and nonspatial information. Experiments were conducted using 10 real-world community-building datasets from Wuhan and Chengdu, China. The results demonstrate that our approach achieves 21.27% higher accuracy and 22.28% higher adjusted rand index in recognizing diverse complex arrangements compared to existing methods. These findings highlight the importance of leveraging complementary and consensus information across different feature dimensions for improving the performance of building clustering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available