4.6 Article

Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch's problem arising in plasma physics

Journal

NEURAL COMPUTING & APPLICATIONS
Volume 29, Issue 6, Pages 83-109

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00521-016-2530-2

Keywords

Artificial neural networks; Sequential quadratic programming; Troesch's problem; Stochastic solvers; Activation functions

Ask authors/readers for more resources

In this study, a computational intelligence technique based on three different designs of artificial neural networks (ANNs) is presented to solve the nonlinear Troesch's boundary value problem arising in plasma physics. The structure of three ANN models is formulated by incorporating log-sigmoid (ANN-LS), radial-base (ANN-RB) and tan-sigmoid (ANN-TS) kernel functions in the hidden layers. Mathematical modeling of the problem is constructed for all three feed-forward ANN models by defining an error function in an unsupervised manner. Sequential quadratic programming method is employed for the learning of unknown parameters for all three ANN-LS, ANN-RB and ANN-TS schemes. The proposed models are applied to solve variants of Troesch's problems by taking the small and large values of critical parameter in the system. A comparison of the proposed solution obtained from these models has been made with the standard numerical results of Adams method. The accuracy and convergence of the proposed models are investigated through results of statistical analysis in terms of performance indices based on the mean absolute deviation, root-mean-square error and variance account for.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available