4.5 Article

Fasudil and SR1001 synergistically protect against sepsis-associated pancreatic injury by inhibiting RhoA/ROCK pathway and Th17/IL-17 response

Journal

HELIYON
Volume 9, Issue 9, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e20118

Keywords

Synergetic effects; Fasudil; SR1001; Sepsis; Pancreatic injury

Ask authors/readers for more resources

The combination of fasudil and SR1001 has a synergistic effect on protecting against sepsis-associated pancreatic injury, reducing Th17 cell differentiation and IL-17 expression, and inhibiting the expressions of GEF-H1, RhoA, and ROCK1. Moreover, the combination treatment also reduces apoptosis of pancreatic cells.
Sepsis is defined as a dysregulated host response to infection that can result in organ dysfunction and high mortality, which needs more effective treatment urgently. Pancreas is one of the most vulnerable organs in sepsis, resulting in sepsis-associated pancreatic injury, which is a fatal complication of sepsis. The aim of this study was to investigate the effect of combination of fasudil and SR1001 on sepsis-associated pancreatic injury and to explore the underlying mechanisms. The model of sepsis-associated pancreatic injury was induced by cecal ligation and puncture. Pancreatic injury was evaluated by HE staining, histopathological scores and amylase activity. The frequency of Th17 cells was analyzed by flow cytometry. Serum IL-17 level was determined by ELISA. Protein levels of ROR gamma t, p-STAT3, GEF-H1, RhoA and ROCK1 were determined by Western blot. The apoptosis of pancreatic cells was examined by TUNEL analysis and Hoechst33342/PI staining. Compared to the sham group, the model group showed significant pathological injury including edema, hyperemia, vacuolization and necrosis. After treatment with fasudil, model mice showed an obvious reduction of Th17 cells and IL-17. SR1001 significantly reduced the expressions of GEF-H1, RhoA and ROCK1 in the model mice. The combination treatment with fasudil and SR1001 significantly inhibited the differentiation of Th17 cells, expressions of IL-17, GEF-H1, RhoA and ROCK1, which were more effective than each monotreatment. In addition, our data revealed a remarkable decrease of apoptosis in pancreatic acinar cells culturing with fasudil or SR1001, which was further inhibited by their combination culture. Lipopolysaccharide remarkably upregulated the differentiation of Th17 cells in vitro, which could be significantly downregulated by fasudil or SR1001, and further downregulated by their combination treatment. Taken together, the combination of fasudil with SR1001 has a synergistic effect on protecting against sepsis-associated pancreatic injury in C57BL/6 mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available